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Recurrence relations for connection coefficients between
Q-orthogonal polynomials of discrete variables in the
non-uniform lattice x(s) = q2s
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† Departamento de Mateḿaticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid,
Butarque 15, 28911, Leganés, Madrid, Spain
‡ Mathematical Physics, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium

Received 4 December 1995

Abstract. We obtain the structure relations forq-orthogonal polynomials in the exponential
lattice q2s and from these we construct the recurrence relation for the connection coefficients
between two families of polynomials belonging to the classical class of discreteq-orthogonal
polynomials. An explicit example is also given.

1. Introduction

Given two families of polynomials, denoted byPn(x) andQm(x), of degree exactly equal to
n andm, respectively, the connection problem asks one to compute the so-called connection
coefficientsCm(n) defined by the relation

Pn(x) =
n∑

m=0

Cm(n)Qm(x).

When both families areorthogonalwith respect to two different measures the connection
coefficients satisfy a relatively simple recurrence relation, but mixing in the (m, n) table three
adjacentm and three adjacentn crossing at (m, n).

The first survey on this topic was given by Askey 20 years ago [1, 2], which gave
in some cases explicit expressions for the coefficients and also discussed the positivity
properties of these coefficients.

It was noticed only recently that an additional assumption on the orthogonality measure
gives for Cm(n) a recurrence only inm, n being fixed. This orthogonality class is called
semi-classicaland is very large [11, 7]. The classical (continuous) family, Jacobi, Bessel,
Laguerre, Hermite (see for instance [12, 5]) and the classical (discrete) family, Hahn,
Kravchuk, Meixner, Charlier (see for instance [13, 5]) are of course included in the semi-
classical class. When the orthogonality measure is defined by a weightρ(x), the semi-
classical class covers all weights which are solutions of a linear first-order differential (or
difference) equation with polynomial coefficients.

The key property inside the semi-classical class, in order to obtain a one index (m)
recurrence relation forCm(n), comes from the existence of a so-called structure relation
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7166 R Álvarez-Nodarse and A Ronveaux

linking linearly the derivative (or difference) ofPn(x) times a polynomial to a fixed
combination ofPk(x).

An algorithm has been recently given which builds for both discrete and continuous
classical families (see [3], [15] and [16]) the explicit recurrences forCm(n), solving in
many cases these recurrences with the help ofMathematica[20] (see also [10, 18, 19]).

Searching for the situation for which a structure relation is known explicitly, we realize
that, from the data of the orthogonal polynomial on the exponential latticex(s) = q2s (a
small subset of theq-world). Here we need to point out that there exists two different
points of view in the study ofq-polynomials: the first one, in the framework of theq-basic
hypergeometric series [6, 8, 9] and the second, in the framework of the theory of difference
equations developed by Nikiforovet al [12–14]. In this work we will use the second
method because it gives us the possibility of providing uniform treatment of several classes
of orthogonal polynomials and, probably, it is the best way to find further applications.

This paper shows how to apply the technique to a particular (simple) case: the
exponential lattice, building first the corresponding structure relations.

2. Structure relations for q-orthogonal polynomials on the exponential lattice
x(s) = qs

Let us start with the study of some general properties of orthogonal polynomials of a discrete
variable in non-uniform lattices. Let

σ̃ (x(s))
1

1x(s − 1
2)

∇Y (s)

∇x(s)
+ τ̃ (x)(s)

2

[
1Y(s)

1x(s)
+ ∇Y (s)

∇x(s)

]
+ λY (s) = 0

∇f (s) = f (s) − f (s − 1) 1f (s) = f (s + 1) − f (s) (1)

be the second-order difference equation of hypergeometric typefor some lattice
function x(s), where∇f (s) and1f (s) denote the backward and forward finite difference
quotients, respectively. Herẽσ(x) and τ̃ (x) are polynomials inx(s) of degree at most 2
and 1, respectively, andλ is a constant. Equation (1) can be obtained from the classical
hypergeometric equation

σ̃ (x)y ′′(x) + τ̃ (x)y ′(x) + λy(s) = 0

via the discretization of the first and second derivativesy ′ and y ′′ in an appropriate
lattice [12, 13]. It is better to rewrite (1) in the equivalent form (see [13, 14])

σ̃ (s)
1

1x(s − 1
2)

∇Y (s)

∇x(s)
+ τ(s)

1Y(s)

1x(s)
+ λY (s) = 0 (2)

σ(s) = σ̃ (x(s)) − 1
2 τ̃ (x(s))1x(s − 1

2) τ (s) = τ̃ (x(s)).

The q-orthogonal polynomialsPn(x(s))q ≡ Pn(s)q on the exponential latticex(s) = q2s

are, for given functionsσ(s) andτ(s), the polynomial (in powers ofx(s) = q2s) solutions
of the second-order difference equation (2).

The k-order difference derivative of the polynomialsPn(x(s))q , defined by

vkn(s) − 1

1xk−1(s)

1

1xk−2(s)
· · · 1

1x(s)
[Pn(x(s))q ] ≡ 1(k)[Pn(x(s))q ]

and

xm(s) = x(s + m/2)
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also satisfy the difference equation of hypergeometric type of the form

σ(s)
1

1xk(s − 1
2)

[∇vkn(s)

∇xk(s)

]
+ τk(s)

1vkn(s)

1xk(s)
+ µkvkn(s) = 0 (3)

where (see [13], p 62, equation (3.1.29))

τk(s) = σ(s + k) − σ(s) + τ(s + k)1x(s + k − 1
2)

1xk−1(s)

and

µk = λn +
k−1∑
m=0

1τm(s)

1xm(s)
.

These polynomial solutions denoted byPn(x(s))q ≡ Pn(s)q satisfy the orthogonality
property

b−1∑
si=a

Pn(x(si))qPm(x(si))pρ(si)1x(si − 1
2) = δnmd2

n (4)

whereρ(x) is some non-negative function (weight function), i.e.

ρ(si)1x(si − 1
2) > 0 (a 6 si 6 b − 1)

supported in a countable subset of the real line [a, b] (a, b can be±∞). The functions
ρ(s) and ρk(s) are the solutions of the Pearson-type difference equations ([13], p 64,
equations (3.2.9) and (3.2.10))

1

1x(s − 1
2)

[σ(s)ρ(s)] = τ(s)ρ(s) (5)

and
1

1xk(s − 1
2)

[σ(s)ρk(s)] = τk(s)ρk(s) (6)

andρ(s) satisfy the condition [14]

σ(s)ρ(s)xk(s − 1
2)|s=a,b = 0 ∀k, l ∈ N (N = 0, 1, 2, . . .}).

In (4) d2
n denotes the square of the norm of the corresponding orthogonal polynomials.

The q-orthogonal polynomials satisfy a three-term recurrence relation (TTRR) of the
form

x(s)Pn(s)q = αnPn+1(s)q + βnPn(s)q + γnPn−1(s)q (7)

with the initial conditions

P−1(s)q = 0 P0(s)q = 1.

It is well known [13, 14] that the polynomial solutions of equation (2), denoted byPn(x(s))q ,
are uniquely determined, up to a normalizing factorBn, by the difference analogue of the
Rodriques formula (see [13], p 66, equation (3.2.19)):

Pn(s)q = Bn

ρ(s)
∇(n)

n [ρn(s)] ∇(n)
n = ∇

∇x1(s)

∇
∇x2(s)

· · · ∇
∇xn(s)

[ρn(s)] (8)

whereρn(s) = ρ(n + s)5n
k=1σ(s + k). These solutions correspond to some values ofλn,

eigenvalues of equation (2), which are computed from (see [13], p 104, [14])

λn = − 1
2[n]q{(qn−1 + q−n+1)τ̃ ′ + [n − 1]q σ̃

′′} (9)
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whereσ̃ (s) = σ(s) + 1
2 τ̃ (s)1x(s − 1

2) and τ̃ (s) = τ(s) (see equation (2)).
Here [n]q denotes the so-calledq-numbers

[n]q = qn − q−n

q − q−1
= sinh(hn)

sinh(h)
q = eh.

2.1. The first structure relation for theq-polynomials in the latticex(s) = q2s

Let us now try to obtain a structure relation for theq-polynomials in the exponential lattice
x(s) = q2s . (For the linear lattice see [13], p 24, equation (2.2.10).)

First, we rewrite the Rodriques equation (8) in another form. We will use the linearity
of the operator∇(n)

n , as well as the identity

∇xk(s) = qk∇x(s).

Then, a straightforward calculation gives us

Pn(s)q = q−n(n + 1)/2Bn

ρ(s)

[ ∇
∇x(s)

]n

[ρn(s)]

[ ∇
∇x(s)

]n

[ρn(s)]

=

n-times︷ ︸︸ ︷
∇

∇x(s)
· · · ∇

∇x(s)
. (10)

Now, from formulae (5) and (10) we find

∇ρn+1(s)

∇xn+1(s)
= ∇[ρn(s + 1)σ (s + 1)]

∇xn(s + 1
2)

= 1[σ(s)ρn(s)]

1xn(s − 1
2)

= τn(s)ρn(s).

Then by using the Rodriques formula (8) we obtain

Pn1(s)q = Bn+1

ρ(s)
∇(n+1)

n+1 [ρn(s)] = Bn+1

ρ(s)
∇(n)

n

∇ρn+1(s)

∇xn+1(s)
= Bn+1

ρ(s)
∇(n)

n [τn(s)ρn(s)]

= q−n(n+1)/2 Bn+1

ρ(s)

[ ∇
∇x(s)

]n

[τn(s)ρn(s)]. (11)

In order to obtain an expression for [∇/∇x(s)]n [τn(s)ρn(s)] we successively apply the
formula ∇f (s)g(s) = f (s)∇g(s) + g(s − 1)∇f (s), as well as formulae

1τn(s)

1x(s)
= qnτ ′

n

[ ∇
∇s(s − 1)

]n

= q2n

[ ∇
∇x(s)

]n

.

Then, equation (11) gives us the following:

Pn+1(s)q = q−n(n+1)/2Bn+1

ρ(s)

×
(

τn(s)

[ ∇
∇x(s)

]n

[ρn(s)] + q2n−1[n]qτ
′
n

[ ∇
∇x(s)

]n−1

[ρn(s − 1)]

)
. (12)

Using the Rodriques formula for the difference derivative of the polynomial ([13], p 66,
equation (3.2.18)) we find (notice that1x(s − 1) = q−21x(s))

∇Pn(s)q

∇x(s)
= 1Pn(s − 1)q

1x(s − 1)
= −q−(n−1)(n+2)/2λnBn

σ(s)ρ(s)

[ ∇
∇x(s − 1)

]n−1

[ρn(s − 1)]

= −q−(n−1)(n−2)/2λnBn

σ(s)ρ(s)

[ ∇
∇x(s)

]n−1

[ρn(s − 1)].
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Therefore, equation (12) can be rewritten in the form

Pn+1(s)q = Bn+1τn(s)

Bn

Pn(s)q − [n]qBn+1τ
′
nσ (s)

λnBn

∇Pn(s)q

∇x(s)

and then, the following differentiation formula holds:

σ(s)
∇Pn(s)q

∇x(s)
= λn

[n]qτ ′
n

[
τn(s)Pn(s)q − Bn

Bn+1
Pn+1(s)q

]
. (13)

If we now use the power expansion ofτn(s), i.e.,τn(s) = τ ′
nxn(s)+τn(0) = τ ′

nq
nx(s)+τn(0)

and the TTRR (7) we obtain thefirst structure relation

σ(s)
∇Pn(s)q

∇x(s)
= S̃nPn+1(s)q + T̃nPn(s)q + R̃nPn−1(s)q (14)

where

S̃n = λn

[n]q

[
qnαn − Bn

τ ′
nBn+1

]
T̃n = λn

[n]q

[
qnβn − τn(0)

τ ′
n

]
(15)

R̃n = λnq
nγn

[n]q
.

2.2. The second structure relation for theq-polynomials in the latticex(s) = q2s

Let us try to obtain now the second structure relation. First, we notice that

1
∇Pn(s)q

∇x(s)
= 1Pn(s)q

1x(s)
− ∇Pn(s)q

∇x(s)
.

Then, by using the difference equation (2)

σ(s)
∇Pn(s)q

∇x(s)
= σ(s)

∇Pn(s)q

∇x(s)
− σ(s)1

∇Pn(s)q

∇x(s)

= [σ(s) + τ(s)1x(s − 1
2)]

∇Pn(s)q

∇x(s)
+ λn1x(s − 1

2)Pn(s)q

and (14) we find

[σ(s) + τ(s)1x(s − 1
2)]

1Pn(s)q

1x(s)
= S̃nPn+1(s)q + (T̃n − λn1x(s − 1

2))Pn(s)q

+R̃nPn−1(s)q . (16)

Now, taking into account the fact that1x(s − 1
2) = (q − q−1)x(s), and using the TTRR

(7) we finally obtain thesecond structure relation

[σ(s) + τ(s)1x(s − 1
2)]

∇Pn(s)q

∇x(s)
= SnPn+1(s)q + TnPn(s)q + RnPn−1(s)q (17)

where

Sn = S̃n − (q − q−1)λnαn Tn = T̃n − (q − q−1)λnβn Rn = R̃n − (q − q−1)λnγn.

(18)
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3. Recurrence relations for connection coefficients

Let us consider two families ofq-polynomialsPn(x) andQn(x) belonging to the class of
discrete orthogonal polynomials in the exponential latticex(s) = q2s . Each polynomial
Pn(x) can be represented as a linear combination of the polynomialsQn(x). In particular,

Pn(x) =
n∑

m=0

Cm(n)Qm(x). (19)

For the familyPn(x) we will use the notation
(i) σ(s), τ (s) andλn for the difference equation (2),
(ii) αn, βn andγn for the TTRR (7) coefficients,
(iii) Sn, Rn andTn for the second structure relation (17),

and for theQn(x)

(i) σ̄ (s), τ̄ (s) and λ̄n for the difference equation (2),
(ii) ᾱn, β̄n and γ̄n for the TTRR (7) coefficients,
(iii) S̄n, R̄n and T̄n for the second structure relation (17).

Since the polynomials of the familyPn(x) are solutions of the second-order difference
equation (2) the action of the difference operator of second orderL̂, defined by

L̂ = σ(s)
1

1x(s − 1
2)

[ ∇
∇x(s)

]
+ τ(s)

1

1x(s)
+ λn

in equation (19) gives
n∑

m=0

Cm(n)

[
σ(s)

1

1x(s − 1
2)

[∇Qm(s)

∇x(s)

]
+ τ(s)

1Qm(x)

1x(s)
+ λnQm(x)

]
= 0. (20)

Multiplying by σ̄ (s) and using

σ̄ (s)
1

1x(s − 1
2)

[∇Qm(x)

∇x(s)

]
= −τ̄ (s)

1Qm(x)

1x(s)
− λ̄nQm(x)

we obtain the relation
n∑

m=0

Cm(n)

[
(τ (s)σ̄ (s) − τ̄ (s)σ (s))

1Qm(x)

1x(s)
+ (λnσ̄ (s) − σ(s)λ̄m)Qm(x)

]
= 0. (21)

In order to eliminate1Qm(x)/1x(s), we multiply (21) byσ̄ (s) + τ̄ (s)1x(s − 1
2) and use

the second structure relation (17) for theQm(x) family, obtaining
n∑

m=0

Cm(n)[(τ (s)σ̄ (s) − τ̄ (s)σ (s))(S̄mQm+1(x) + R̄mQm−1(x) + T̄mQm(x))

+(σ̄ (s) + τ̄ (s)1x(s − 1
2))(λnσ̄ (s) − σ(s)λ̄m)Qm(x)] = 0. (22)

The last step consists of expanding the remaining terms of typeσ̄ 2(s)Qm(x), σ̄ (s)σ (s)

Qm(x), σ (s)τ̄ (s)Qm(x) and σ̄ (s)τ (s)Qm(x) in a linear combination ofQn(x) by using the
TTRR (7) repeatedly for theQn(x) family.

After this process, (2) reduces to
N∑

m=0

Mm[C0(n), C1(n), . . . , Cn(n)]Qm(x) (23)

where

N = max{n + degσ + deg(σ̄ ), n + 2 deg(σ̄ ), n + 1 + deg(σ̄ ) + deg(τ ), n + 1 + deg(τ̄ )

+ deg(σ ), 1 + deg(τ̄ ) + deg(σ̄ )}.
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Taking into account the linear independent of the familyQm(x) we obtain the linear
system

Mm[C0(n), C1(n), . . . , Cn(n)] = 0. (24)

These relations contain (linearly) several connection coefficientsCi(n) depending essentially
on the degrees ofσ(s) andσ̄ (s). In the most general situation they are polynomials of second
degree inx(s) = q2s . In this case, we obtain a relation of the type of linear system that we
are looking,

Mm[Cm+4(n), . . . , Cm−4(n)] = 0 (25)

which is valid forn greater than or equal to the number of initial conditions needed to start
the recursion (n > 8). Notice that for (n < 8) the system also gives the solution, but not in
a recurrent way.

Notice that for theq-Hahn,q-Meixner, q-Charlier andq-Kravchuk polynomials, as is
shown in [13], p 95, table 3.3,σ(s) is a polynomial of second degree inx(s) = q2s . This
implies that for such polynomials the recurrence relations for the connection coefficient are
all of the form (25). Again note that we follow the notation introduced by Nikiforovet al
[13].

4. Recurrence relations for connection coefficients: a simple example

As we have noted in the previous section, the recurrence relation for the connection
coefficients for different classes ofq-polynomials are too large (eight terms). Here we
will analyse a more simple case. First, notice that in the previous algorithm we have not
used the orthogonality property of the polynomialsPn, but only that they satisfy a difference
equation. On the other hand, for the polynomialsQm we need to have structure relations as
well as three-term recurrence relations. Let us show an example in which we decompose
a set of polynomialsPn(s), satisfying a certain difference equation of first order in the
latticex(s) = q2s , as a linear combination of orthogonalq-polynomials defined in the same
lattice, i.e. theq-Hahn, q-Meixner, q-Kravchuk andq-Charlier orthogonal polynomials
(see [13, 4, 17]).

Let us define the quantities(s)q and(sn)q by

(s)q = q2s − 1

q2 − 1
= qs−1[s]q (26)

and

(sn)q = (s)q(s − 1)q · · · (s − n + 1)q −
n−1∏
k=0

q2s+2k − 1

q2 − 1
. (27)

The quantities(sn)q are closely related to theq-Stirling numbersS̃q2(n, k), s∗
q2(n, k) [21]

by formulae

(s)nq =
n∑

k=0

S̃q2(n, k)(sk)q (sn)q =
n∑

k=0

s∗
q2(n, k)(s)kq (28)

and satisfy the following two difference equations (here, as before,x(s) = q2s):

(q2s − 1)
∇(sn)q

∇x(s)
− q−n+1[n]q(sn)q = 0 (29)
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and

(q2s−2n+2 − 1)
∇(sn)q

∇x(s)
− q−n+1[n]q(sn)q = 0. (30)

Since(sn)q is a polynomial inx(s) = q2s , it can be represented as a linear combination of
the polynomialsQm(x), theq-polynomials in the exponential lattice. In particular,

(sn)q =
n∑

m=0

Cm(n)Qm(x). (31)

Let us obtain the recurrence relation for the connection coefficientsCm(n) between the
(sn)q , and theq-Charlier, q-Meixner or q-Kravchuk cases. (Forq-Hahn polynomials we
will consider a separate relation.) In order to do this we apply the operator

L̄ = (q2s − 1)
∇

∇x(s)
− q−n+1[n]q (32)

to both sides of (31). Using formula (29) (L̃(sn)q = 0) and multiplying byq2s we obtain
the following expression:

0 =
n∑

m=0

Cm(n)

{
q2s(q2s − 1)

∇Qm(x)

∇x(s)
− q−m+1[m]qq

2sQm(x)

}
. (33)

Taking into account the fact that forq-Charlier, q-Meixner andq-Kravchuk polynomials
theσ(s) function in (2) coincides withq2s(q2s − 1) and applying the structure relation (14)
and the TTRR (7) to the previous expression we find

0 =
n∑

m=0

Cm(n){AmQm+1(x) + BmQm(x) + 0mQm−1(x)}

from which we obtain the following TTRR for the connection coefficientsCm(n):

Am−1Cm−1(n) + BmQm(n) + 0m+1Cm+1(n) = 0 (34)

where

Am−1 = S̃m−1 − q−m+2[m − 1]qαm−1 = λm−1

[m − 1]q

[
qm−1αm−1 − Bm−1

τ ′
m−1Bm

]
−q−m+2[m − 1]qαm−1

Bm = T̃m − q−m+1[m]qβm = λm

[m]q

[
qmβm − τm(0)

τ ′
m

]
− q−m+1[m]qβm

0m+1 = R̃m+1 − q−mγm+1 = λm+1q
m+1γm+1

[m − 1]q
− q−m[m + 1]qγm+1. (35)

In order to obtain the recurrence relation for the connection coefficients in theq-Hahn
case we apply the operator̃L(32) to both sides of (31). Tasking into account the fact that
L̃(sn)q = 0 and multiplying byq2α+2N − q2s we obtain the following expression:

0 =
n∑

m=0

Cm(n)

{
(q2α+2N − q2s)(q2s − 1)

∇Qm(x)

∇x(s)
− q−m+1[m]qq

2sQm(s)

}
. (36)

Taking into account the fact that for theq-Hahn case theσ(s) function in (2) coincides with
(q2α+2N − q2s)(q2s − 1) (see [17]) and using the structure relation (14) and the TTRR (7)
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we obtain the same expression (34) as before for the TTRR for the connection coefficients
Cm(n), where now

Am−1 = S̃m−1 + q−m+2[m − 1]qαm−1 = λm−1

[m − 1]q

[
qm−1αm−1 − Bm−1

τ ′
m−1Bm

]
−q−m+2[m − 1]qαm−1

Bm = T̃m + q−m+1[m]qβm − [m]qq
2N+2α−m+1 = λm

[m]q

[
qmβm − τm(0)

τ ′
m

]
+q−m+1[m]qβm − [m]qq

2N+2α−m+1

0m+1 = R̃m+1 + q−mγm+1 = λm+1q
m+1γm+1

[m + 1]q
+ q−m[m + 1]qγm+1.

(37)

4.1. The three-term recurrence relation for connection coefficients of theq-powers(sn)q
and theq-Meixner polynomialsmγ,µ

n (s, q)

Here we will calculate the coefficientsAm−1, Bm and 0m+1 of the three-term recurrence
relation for connection coefficientsCm(n) (34) of theq-powers(sn)q and theq-Meixner
polynomialsm

γ,µ
n (s, q), i.e.

(sn)q =
n∑

k=0

Cm(n)m
γ,µ

k (s, q).

The main data for theq-Meixner polynomials are provided in [4]. In our work we will use
monic polynomials, i.e. the leading coefficientan = 1. In table 1 we provide the quantities
needed for our calculations. (For more details see [4, 13]). We want to point out that these
monic q-Meixner polynomialsmγ,µ

n (s, q) [4] are connected with the monic littleq-Jacobi
polynomialspn(x; a, b|q) [6, 8] by the relation

mγ,µ
n (s, q) = pn(q

2s; µ, q2γ−2|q2).

Table 1. The main data forq-Meixner polynomials [4].

m
γ,µ
n (s, q), µ = q2θ

σ (s) q2s (q2s − 1)

τ (s) qs+2θ+γ+2[s + γ ]q − q2[s]q
λn −[n]qqγ+θ+1[n + γ + θ ]q
τ ′
n qγ+θ+1[2n + γ + θ + 1]q

τn(0) −qθ+1[n + θ + 1]q
Bn

Bn+1
−qγ+θ+1 [2n+γ+θ+1]q [2n+γ+θ ]q

[n+γ+θ ]q
αn 1

βn q−γ [n+1]q [n+θ+1]q
[2n+γ+θ+1]q

− q−γ [n]q [n+θ ]q
[2n+γ+θ−1]q

γn
q−n−3γ+2[n]q [γ+n−1]q [n+γ+θ−1]q [n+θ ]q

[2n+γ+θ−2]q [2n+γ+θ−1]2q [2n+γ+θ ]q

If we now apply formulae (15) and (14) we obtain forq-Meixner polynomials the
structure relation

σ(s)
∇m

γ,µ
n (s, q)

∇x(s)
= S̃nm

γ,µ

n+1(s, q) + T̃nm
γ,µ
n (s, q) + R̃nm

γ,µ

n−1(s, q) (38)
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where

S̃n = −qγ+θ+1(qn[n + γ + θ ]q + [2n + γ + θ ]q)

T̃n = −qn+θ+1[n + γ + θ ]q

(
n + 1]q [n + θ + 1]q
[2n + γ + θ + 1]q

− [n]q [n + θ ]q
[2n + γ + θ − 1]q

)
−qθ+1[n + θ + 1]q [n + γ + θ ]q

[2n + γ + θ + 1]q

R̃n = −q−2γ+θ+3[n]q [γ + n − 1]q [n + γ + θ ]q [n + γ + θ − 1]q [n + θ ]q
[2n + γ + θ − 2]q [2n + γ + θ − 1]2q [2n + γ + θ ]q

. (39)

Then, by using (35) we finally find the coefficientsAm−1, Bm and0m+1:

Am−1 = −qγ+θ+1(qm−1[m + γ + θ − 1]q + [2m + γ + θ − 2]q) − q−m+2[m − 1]q (40)

Bm = −
(

[m + 1]q [m + θ + 1]q
[2m + γ + θ + 1]q

− [m]q [m + θ ]q
[2m + γ + θ − 1]q

)
qθ+1[2m + γ + θ ]q

−qθ+1[m + γ + θ ]q [m + θ + 1]q
[2m + γ + θ + 1]q

(41)

0m+1 = −q−m−2γ+θ+2[m + 1]q [γ + m]q [m + γ + θ ]q [m + θ + 1]q
[2m + γ + θ ]q [2m + γ + θ + 1]q [2m + γ + θ + 2]q

. (42)
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